Universiteit Utrecht

Mathematisch Instituut

3584 CD Utrecht

Final Measure and Integration 2012-13

Universiteit Utrecht

(1) Let (E, \mathcal{B}, ν) be a measure space, and $h : E \to \mathbb{R}$ a non-negative measurable function. Define a measure μ on (E, \mathcal{B}) by $\mu(A) = \int_A h d\nu$ for $A \in \mathcal{B}$. Show that for every non-negative measurable function $F : E \to \mathbb{R}$ one has

$$\int_{E} F \, d\mu = \int_{E} Fh \, d\nu.$$

Conclude that the result is still true for $F \in \mathcal{L}^1(\mu)$ which is not necessarily non-negative. (Hint: use a standard argument starting with indicator functions) (20 pts)

(2) Consider the measure space $((0, \infty), \mathcal{B}((0, \infty), \lambda))$, where $\mathcal{B}((0, \infty))$ and λ are the restrictions of the Borel σ -algebra and Lebesgue measure to the interval $(0, \infty)$. Show that

$$\lim_{n \to \infty} \int_{(0,n)} \left(1 + \frac{x}{n} \right)^n e^{-2x} d\lambda(x) = 1.$$

(Hint: note that $1 + x \le e^x$). (20 pts)

(3) Let (X, \mathcal{A}, μ) be a probability space (i.e. $\mu(X) = 1$) and let $\{f_n\}$ be a sequence in $\mathcal{L}^1(\mu)$ such that $\int_X |f_n| d\mu = n$ for all $n \ge 1$. Let

$$A_n = \{x : |f_n(x) - \int_X f_n d\mu| \ge n^3\}$$

- (a) Show that $\mu\left(\bigcap_{m\geq 1}\bigcup_{n\geq m}A_n\right) = 0$. (Hint: use Exercise 6.9 (Borel-Cantelli Lemma)). (10 pts)
- (b) Use part (a) to show that for every $\epsilon > 0$ there exists $m_0 \ge 1$ such that

$$\mu\{x \in X : |f_n(x)| < n^3 + n, \text{ for all } n \ge m_0\} > 1 - \epsilon.$$

(10 pts)

- (4) Let (X, \mathcal{A}, μ) be a σ -finite measure space and (A_i) a sequence in \mathcal{A} such that $\lim_{n\to\infty} \mu(A_n) = 0$.
 - (a) Show that $\mathbf{1}_{A_n} \xrightarrow{\mu} 0$, i.e. the sequence $(\mathbf{1}_{A_n})$ converges to 0 in measure. (5 pts)
 - (b) Show that for any $u \in \mathcal{L}^1(\mu)$, one has $u\mathbf{1}_{A_n} \xrightarrow{\mu} 0.(5 \text{ pts})$
 - (c) Show that for any $u \in \mathcal{L}^1(\mu)$, one has

$$\sup_{n} \int_{\{|u|\mathbf{1}_{A_{n}} > |u|\}} |u|\mathbf{1}_{A_{n}} \, d\mu = 0.$$

(5 pts)

- (d) Show that $\lim_{n\to\infty} \int_{A_n} u \, d\mu = 0$. (5 pts)
- (5) Let $E = \{(x, y) : 0 < x < \infty, 0 < y < 1\}$. We consider on E the restriction of the product Borel σ -algebra, and the restriction of the product Lebesgue measure $\lambda \times \lambda$. Let $f : E \to \mathbb{R}$ be given by $f(x, y) = y \sin x e^{-xy}$.
 - (a) Show that f is $\lambda \times \lambda$ integrable on E. (8 pts)
 - (b) Applying Fubini's Theorem to the function f, show that

$$\int_0^\infty \frac{\sin x}{x} \left(\frac{1 - e^{-x}}{x} - e^{-x} \right) dx = \frac{1}{2} \log 2.$$

(12 pts)