Measure and Integration: Final 2015-16

(1) Consider the measure space $[0,1], \mathcal{B}([0,1]), \lambda$ where λ is Lebesgue measure on [0,1]. Define $u_n(x) = \frac{n^2 x^2}{1+n^2 x}$ for $x \in [0,1]$ and $n \ge 1$. Show that

$$\lim_{n \to \infty} \int_{[0,1]} \frac{n^2 x^2}{1 + n^2 x} \, d\lambda(x) = 1/2.$$

(1 pt)

(2) Suppose μ and ν are finite measures on (X, \mathcal{A}) . Show that there exists a function $f \in \mathcal{L}^1_+(\mu)$, and a set $A_0 \in \mathcal{A}$ with $\mu(A_0) = 0$ such that

$$\nu(E) = \int_E f \, d\mu + \nu(A_0 \cap E),$$

for all $E \in \mathcal{A}$. (1.5 pts)

- (3) Consider the measure space $[0,1), \mathcal{B}([0,1)), \lambda$ where λ is Lebesgue measure on [0,1). Let $D_1 = [0,1/2)$ and $D_k = \left[\sum_{i=1}^{k-1} 2^{-i}, \sum_{i=1}^{k} 2^{-i}\right], k \ge 2$. Define $u(x) = \sqrt{2^{k-1}}$ for $x \in D_k, k \ge 1$. Determine the values of $p \in [1,\infty)$ such that $u \in \mathcal{L}^p(\lambda)$. In case $u \in \mathcal{L}^p(\lambda)$, find the value of $||u||_p$. (2 pts.)
- (4) Let (X, \mathcal{A}, μ) be a σ -finite measure space, and Let $(u_j)_j \subseteq \mathcal{L}^1(\mu)$. Suppose $(u_j)_j$ converges to u μ a.e., and that the sequence (u_j^-) is uniformly integrable. Prove that $\liminf_{n \to \infty} \int u_n \, d\mu \ge \int u \, d\mu$. (2 pts)
- (5) Let (X, \mathcal{A}, μ) be a σ -finite measure space, and assume $u \in \mathcal{M}^+(\mathcal{A})$. Let $\phi : [0, \infty) \to \mathbb{R}$ be continuously differentiable (i.e. ϕ' exists and is continuous) such that $\phi(0) = 0$ and $\phi' \ge 0$ for all $t \ge 0$. Show that

$$\int_X \phi \circ u(x) \, d\mu = \int_{[0,\infty)} \phi'(t) \mu(\{x \in X : u(x) \ge t\}) \, d\lambda(t).$$

Conclude that if $u \in \mathcal{L}^p_+(\mu)$, then

$$\int_X u^p \, d\mu = p \int_{[0,\infty)} t^{p-1} \mu(\{x \in X : u(x) \ge t\}) \, d\lambda(t).$$

(2 pts)

- (6) Let (X, \mathcal{A}, μ) be a measure space and $f \in \mathcal{L}^1(\mu) \cap \mathcal{L}^2(\mu)$.
 - (a) Show that $f \in \mathcal{L}^p(\mu)$ for all $1 \le p \le 2$. (1 pt)
 - (b) Prove that $\lim_{p \searrow 1} ||f||_p^p = ||f||_1$. (1 pt)