Measure and Integration: Solutions Hertentamen 2014-15

(1) Consider the measure space $([0,1), \mathcal{B}([0,1)), \lambda)$, where $\mathcal{B}([0,1))$ is the Borel σ-algebra restricted to $[0,1)$ and λ is the restriction of Lebesgue measure on $[0,1)$. Define the transformation T : $[0,1) \rightarrow[0,1)$ given by

$$
T(x)= \begin{cases}3 x & 0 \leq x<1 / 3 \\ 3 x-1, & 1 / 3 \leq x<2 / 3 \\ 3 x-2, & 2 / 3 \leq x<1\end{cases}
$$

(a) Show that T is $\mathcal{B}([0,1)) / \mathcal{B}([0,1))$ measurable. (0.5 pts)
(b) Determine the image measure $T(\lambda)=\lambda \circ T^{-1}$. (0.5 pts)
(c) Show that for all $f \in \mathcal{L}^{1}(\lambda)$ one has, $\int f d \lambda=\int f \circ T d \lambda$. (0.5 pts)
(d) Let $\mathcal{C}=\left\{A \in \mathcal{B}([0,1)): \lambda\left(T^{-1} A \Delta A\right)=0\right\}$. Show that \mathcal{C} is a σ-algebra. (0.5 pts)

Solution(a): To show T is $\mathcal{B}([0,1)) / \mathcal{B}([0,1))$ measurable, it is enough to consider inverse images of intervals of the form $[a, b) \subset[0,1)$. Now,

$$
T^{-1}([a, b))=\left[\frac{a}{3}, \frac{b}{3}\right) \cup\left[\frac{a+1}{3}, \frac{b+1}{3}\right) \cup\left[\frac{a+2}{3}, \frac{b+2}{3}\right) \in \mathcal{B}([0,1)) .
$$

Thus, T is measurable.
Solution(b): We claim that $T(\lambda)=\lambda$. To prove this, we use Theorem 5.7. Notice that $\mathcal{B}([0,1))$ is generated by the collection $\mathcal{G}=\{[a, b): 0 \leq a \leq b<1\}$ which is closed under finite intersections. Now,

$$
\begin{aligned}
T(\lambda)([a, b)) & =\lambda\left(T^{-1}([a, b))\right) \\
& =\lambda\left(\left[\frac{a}{3}, \frac{b}{3}\right)\right)+\lambda\left(\left[\frac{a+1}{3}, \frac{b+1}{3}\right)\right)+\lambda\left(\left[\frac{a+2}{3}, \frac{b+2}{3}\right)\right) \\
& =b-a=\lambda([a, b)) .
\end{aligned}
$$

Since the constant sequence $([0,1))$ is exhausting, belongs to \mathcal{G} and $\lambda([0,1))=T(\lambda([0,1))=1<$ ∞, we have by Theorem 5.7 that $T(\lambda)=\lambda$.

Solution(c): We use a standard argument. Assume first that $f=\mathbf{1}_{A}$ for some $A \in \mathcal{B}([0,1)$. Note that $\mathbf{1}_{T^{-1} A}=\mathbf{1}_{A} \circ T$, hence by part (b),

$$
\int f d \lambda=\int \mathbf{1}_{A} d \lambda=\lambda(A)=\lambda\left(T^{-1} A\right)=\int \mathbf{1}_{T^{-1} A} d \lambda=\int \mathbf{1}_{A} \circ T d \lambda=\int f \circ T d \lambda
$$

Now, let $f \in \mathcal{E}^{+}$, and let $f=\sum_{i=1}^{n} a_{i} \mathbf{1}_{A_{i}}$ be a standard representation of f. By linearity of the integral and the above, we have

$$
\int f d \lambda=\sum_{i=1}^{n} a_{i} \int \mathbf{1}_{A_{i}} d \lambda=\sum_{i=1}^{n} a_{i} \int \mathbf{1}_{A_{i}} \circ T d \lambda=\int \sum_{i=1}^{n} a_{i} \mathbf{1}_{A_{i}} \circ T d \lambda=\int f \circ T d \lambda
$$

Assume now that $f \in \mathcal{L}_{+}^{1}(\lambda)$, then there exists an increasing sequence $\left(f_{n}\right)_{n}$ in \mathcal{E}^{+}such that $f=\sup f_{n}$. By Beppo-Levi, we have

$$
\int f d \lambda=\sup _{n} \int f_{n} d \lambda=\sup _{n} \int f_{n} \circ T d \lambda=\int \sup _{n} f_{n} \circ T d \lambda=\int f \circ T d \lambda .
$$

Finally, consider $f \in \mathcal{L}^{1}(\lambda)$, then $f^{+}, f^{-} \in \mathcal{L}_{+}^{1}(\lambda)$, and

$$
\int f d \lambda=\int f^{+} d \lambda-\int f^{-} d \lambda=\int f^{+} \circ T d \lambda-\int f^{-} \circ T d \lambda=\int f \circ T d \lambda
$$

Solution(d): We check the three conditions for a collection of sets to be a σ-algebra. Firstly, $[0,1) \in \mathcal{B}([0,1))$ and $T^{-1}([0,1))=[0,1)$. Thus $\lambda\left(T^{-1}([0,1)) \Delta[0,1)\right)=\lambda(\emptyset)=0$ so that $[0,1) \in \mathcal{C}$. Secondly, Let $A \in \mathcal{C}$, then $\lambda\left(T^{-1} A \Delta A\right)=0$. Since T is a measurable function and $A \in \mathcal{B}([0,1))$, then $\left.\left(T^{-1} A\right)^{c}\right) \in \mathcal{B}([0,1))$. Since $\left.\left(T^{-1} A\right)^{c}\right)=T^{-1} A^{c}$, and $T^{-1} A \Delta A=T^{-1} A^{c} \Delta A^{c}$, we have $\lambda\left(T^{-1} A^{c} \Delta A^{c}\right)=\lambda\left(T^{-1} A \Delta A\right)=0$, so $A^{c} \in \mathcal{C}$. Thirdly, let $\left(A_{n}\right)$ be a sequence in \mathcal{C}, then $A_{n} \in \mathcal{B}([0,1))$ and $\lambda\left(T^{-1} A_{n} \Delta A_{n}\right)=0$ for each n. Since $\mathcal{B}([0,1))$ is a σ-algebra, we have $\bigcup_{n} A_{n} \in \mathcal{B}([0,1))$. Note that

$$
T^{-1}\left(\bigcup_{n} A_{n}\right)=\bigcup_{n} T^{-1} A_{n} \text { and } T^{-1}\left(\bigcup_{n} A_{n}\right) \Delta \bigcup_{n} A_{n} \subseteq \bigcup_{n}\left(T^{-1} A_{n} \Delta A_{n}\right)
$$

Thus,

$$
\lambda\left(T^{-1}\left(\bigcup_{n} A_{n}\right) \Delta \bigcup_{n} A_{n}\right) \leq \sum_{n} \lambda\left(T^{-1} A_{n} \Delta A_{n}\right)=0
$$

Hence, $\bigcup_{n} A_{n} \in \mathcal{C}$. This shows that \mathcal{C} is a σ-algebra.
(2) Consider the measure space $((0, \infty), \mathcal{B}((0, \infty)), \lambda)$, where $\mathcal{B}((0, \infty))$ is the restriction of the Borel σ-algebra, and λ Lebesgue measure restricted to $(0, \infty)$. Determine the value of

$$
\lim _{n \rightarrow \infty} \int_{(0, n)} \frac{\cos \left(x^{5}\right)}{1+n x^{2}} d \lambda(x)
$$

(2 pts)
Proof: Let $u_{n}(x)=\mathbf{1}_{(0, n)} \frac{\cos \left(x^{5}\right)}{1+n x^{2}}$ and

$$
g(x)= \begin{cases}1 & \text { if } 0<x \leq 1 \\ 1 / x^{2} & \text { if } x>1\end{cases}
$$

Then, $\lim _{n \rightarrow \infty} u_{n}(x)=0$ for all $x>0$, and $\left|u_{n}\right| \leq g$. Furthermore the function g is measurable, non-negative and the improper Riemann integrable on $(0, \infty)$ exists, it follows that it is Lebesgue integrable on $(0, \infty)$. By Lebesgue Dominated Convergence Theorem

$$
\lim _{n \rightarrow \infty} \int_{(0, n)} \frac{\cos \left(x^{5}\right)}{1+n x^{2}} d \lambda(x)=\lim _{n \rightarrow \infty} \int u_{n}(x) d \lambda(x)=\int \lim _{n \rightarrow \infty} u_{n}(x) d \lambda(x)=0
$$

(3) Let (X, \mathcal{A}, μ) be a finite measure space, and $1<p, q<\infty$ two conjugate numbers (i.e. $1 / p+1 / q=$ 1). Let $g \in \mathcal{M}(\mathcal{A})$ be a measurable function satisfying

$$
\int|f g| d \mu \leq C\|f\|_{p}
$$

for all $f \in \mathcal{L}^{p}(\mu)$ and for some constant C.
(a) For $n \geq 1$, let $E_{n}=\{x \in X:|g(x)| \leq n\}$ and $g_{n}=\mathbf{1}_{E_{n}}|g|^{q / p}$. Show that $g_{n} \in \mathcal{L}^{p}(\mu)$ for all $n \geq 1$. (0.5 pts)
(b) Show that $g \in \mathcal{L}^{q}(\mu)$. (1.5 pts)

Proof(a):

$$
\int\left|g_{n}\right|^{p} d \mu=\int \mathbf{1}_{E_{n}}|g|^{q} d \mu \leq n^{q} \mu\left(E_{n}\right)<\infty n \geq 1
$$

Thus, $g_{n} \in \mathcal{L}^{p}(\mu)$ for all $n \geq 1$.
Proof(b): Since $g_{n} \in \mathcal{L}^{p}(\mu)$ for all $n \geq 1$, then by hypothesis,

$$
\int\left|g_{n} g\right| d \mu \leq C\left\|g_{n}\right\|_{p}
$$

However, $\left|g_{n} g\right|=\mathbf{1}_{E_{n}}|g|^{q}=\left|g_{n}\right|^{p}$, and $\left\|g_{n}\right\|_{p}^{p}=\left\|\mathbf{1}_{E_{n}} g\right\|_{q}^{q}$. Substituting these in the above inequality, we get

$$
\left\|\mathbf{1}_{E_{n}} g\right\|_{q}^{q}=\int \mathbf{1}_{E_{n}}|g|^{q} d \mu \leq C\left\|\mathbf{1}_{E_{n}} g\right\|_{q}^{q / p}
$$

implying $\left\|\mathbf{1}_{E_{n}} g\right\|_{q} \leq C$. Since $\left(E_{n}\right)$ is an increasing sequence of measurable sets with $\bigcup_{n=1}^{\infty} E_{n}=$ X, then $\mathbf{1}_{E_{n}}|g|^{q} \nearrow|g|^{q}$. By Beppo-Levi we have $\|g\|_{q} \leq C$, and hence $g \in \mathcal{L}^{q}(\mu)$.
(4) Let (X, \mathcal{A}, μ) be a σ-finite measure space, and $\left(f_{j}\right)$ a uniformly integrable sequence of measurable functions. Define $F_{k}=\sup _{1 \leq j \leq k}\left|f_{j}\right|$ for $k \geq 1$.
(a) Show that for any $w \in \mathcal{M}^{+}(\mathcal{A})$,

$$
\int_{\left\{F_{k}>w\right\}} F_{k} d \mu \leq \sum_{j=1}^{k} \int_{\left\{\left|f_{j}\right|>w\right\}}\left|f_{j}\right| d \mu .
$$

(0.5 pts)
(b) Show that for every $\epsilon>0$, there exists a $w_{\epsilon} \in \mathcal{L}_{+}^{1}(\mu)$ such that for all $k \geq 1$

$$
\int_{X} F_{k} d \mu \leq \int_{X} w_{\epsilon} d \mu+k \epsilon
$$

(1 pt)
(c) Show that

$$
\lim _{k \rightarrow \infty} \frac{1}{k} \int_{X} F_{k} d \mu=0
$$

(0.5 pts)

Proof (a) Let $w \in \mathcal{M}^{+}(\mathcal{A})$, then

$$
\begin{aligned}
\int_{\left\{F_{k}>w\right\}} F_{k} d \mu & \leq \sum_{j=1}^{k} \int_{\left\{F_{k}>w\right\} \cap\left\{\left|f_{j}\right|=F_{k}\right\}} F_{k} d \mu \\
& \leq \sum_{j=1}^{k} \int_{\left\{\left|f_{j}\right|>w\right\}}\left|f_{j} \cdot\right| d \mu .
\end{aligned}
$$

Proof (b) Let $\epsilon>0$. By uniform integrability of the sequence $\left(f_{j}\right)$ there exists $w_{\epsilon} \in \mathcal{L}^{+}(\mu)$ such that

$$
\int_{\left\{\left|f_{j}\right|>w_{\epsilon}\right\}}\left|f_{j}\right| d \mu<\epsilon
$$

for all $j \geq 1$. By part (a)

$$
\int_{\left\{F_{k}>w_{\epsilon}\right\}} F_{k} d \mu \leq \sum_{j=1}^{k} \int_{\left\{\left|f_{j}\right|>w_{\epsilon}\right\}}\left|f_{j}\right| d \mu \leq k \epsilon
$$

Now,

$$
\begin{aligned}
\int_{X} F_{k} d \mu & =\int_{\left\{F_{k}>w_{\epsilon}\right\}} F_{k} d \mu+\int_{\left\{F_{k} \leq w_{\epsilon}\right\}} F_{k} d \mu \\
& \leq k \epsilon+\int_{X} w_{\epsilon} d \mu
\end{aligned}
$$

Proof (c) For any $\epsilon>0$, by part (b),

$$
\frac{1}{k} \int_{X} F_{k} d \mu \leq \frac{1}{k} \int_{X} w_{\epsilon} d \mu+\epsilon
$$

Thus,

$$
\limsup _{k \rightarrow \infty} \frac{1}{k} \int_{X} F_{k} d \mu \leq \epsilon,
$$

for any ϵ. Since $F_{k} \geq 0$, we see that

$$
\limsup _{k \rightarrow \infty} \frac{1}{k} \int_{X} F_{k} d \mu=\lim _{k \rightarrow \infty} \frac{1}{k} \int_{X} F_{k} d \mu=0
$$

(5) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ-algebra, and λ Lebesgue measure. Let $k, g \in \mathcal{L}^{1}(\lambda)$ and define $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$, and $h: \mathbb{R} \rightarrow \overline{\mathbb{R}}$ by

$$
F(x, y)=k(x-y) g(y)
$$

(a) Show that F is measurable. (1 pt)
(b) Show that $F \in \mathcal{L}^{1}(\lambda \times \lambda)$, and

$$
\int_{\mathbb{R} \times \mathbb{R}} F(x, y) d(\lambda \times \lambda)(x, y)=\left(\int_{\mathbb{R}} k(x) d \lambda(x)\right)\left(\int_{\mathbb{R}} g(y) d \lambda(y)\right) .
$$

(1 pts)
Proof(a): To show measurablity of F, we first extend the domain of g to \mathbb{R}^{2} as follows. Define $\bar{g}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $\bar{g}(x, y)=g \circ \pi_{2}(x, y)=g(y)$. It is easy to see that \bar{g} is $\mathcal{B}\left(\mathbb{R}^{2}\right) / \mathcal{B}(\mathbb{R})$ measurable. Moreover, the function $d: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $d(x, y)=x-y$ is continuous hence $\mathcal{B}\left(\mathbb{R}^{2}\right) / \mathcal{B}(\mathbb{R})$ measurable. Since

$$
F(x, y)=k(x-y) g(y)=k \circ d(x, y) \bar{g}(x, y)
$$

is the product of two $\mathcal{B}\left(\mathbb{R}^{2}\right) / \mathcal{B}(\mathbb{R})$ measurable functions, it follows that F is $\mathcal{B}\left(\mathbb{R}^{2}\right) / \mathcal{B}(\mathbb{R})$ measurable.

Proof(b): Since Lebesgue measure is translation invariant, we have

$$
\begin{aligned}
\left.\iint|F(x, y)| d \lambda(x) d \lambda\right)(y) & =\iint|k(x-y)||g(y)| d \lambda(x) d \lambda(y) \\
& \left.=\iint|k(x)||g(y)| d \lambda(x) d \lambda\right)(y) \\
& \left.=\int|k(x)| d \lambda(x) \int|g(y)| d \lambda\right)(y)<\infty
\end{aligned}
$$

By Fubini's Theorem, this implies that F is $\lambda \times \lambda$ integrable, and

$$
\begin{aligned}
\int F(x, y) d(\lambda \times \lambda)(x, y) & =\iint k(x-y) g(y) d \lambda(x) d \lambda(y) \\
& \left.=\iint k(x) g(y) d \lambda(x) d \lambda\right)(y) \\
& \left.=\int k(x) d \lambda(x) \int g(y) d \lambda\right)(y)
\end{aligned}
$$

