Measure and Integration: Solutions Hertentamen 2014-15

(1) Consider the measure space $([0,1), \mathcal{B}([0,1)), \lambda)$, where $\mathcal{B}([0,1))$ is the Borel σ -algebra restricted to [0,1) and λ is the restriction of Lebesgue measure on [0,1). Define the transformation $T : [0,1) \to [0,1)$ given by

$$T(x) = \begin{cases} 3x & 0 \le x < 1/3, \\ 3x - 1, & 1/3 \le x < 2/3, \\ 3x - 2, & 2/3 \le x < 1. \end{cases}$$

- (a) Show that T is $\mathcal{B}([0,1))/\mathcal{B}([0,1))$ measurable. (0.5 pts)
- (b) Determine the image measure $T(\lambda) = \lambda \circ T^{-1}$. (0.5 pts)
- (c) Show that for all $f \in \mathcal{L}^1(\lambda)$ one has, $\int f d\lambda = \int f \circ T d\lambda$. (0.5 pts)
- (d) Let $\mathcal{C} = \{A \in \mathcal{B}([0,1)) : \lambda(T^{-1}A\Delta A) = 0\}$. Show that \mathcal{C} is a σ -algebra. (0.5 pts)

Solution(a): To show T is $\mathcal{B}([0,1))/\mathcal{B}([0,1))$ measurable, it is enough to consider inverse images of intervals of the form $[a,b) \subset [0,1)$. Now,

$$T^{-1}([a,b)) = [\frac{a}{3}, \frac{b}{3}) \cup [\frac{a+1}{3}, \frac{b+1}{3}) \cup [\frac{a+2}{3}, \frac{b+2}{3}) \in \mathcal{B}([0,1)).$$

Thus, T is measurable.

Solution(b): We claim that $T(\lambda) = \lambda$. To prove this, we use Theorem 5.7. Notice that $\mathcal{B}([0, 1))$ is generated by the collection $\mathcal{G} = \{[a, b) : 0 \le a \le b < 1\}$ which is closed under finite intersections. Now,

$$\begin{split} T(\lambda)([a,b)) &= \lambda(T^{-1}([a,b))) \\ &= \lambda([\frac{a}{3},\frac{b}{3})) + \lambda([\frac{a+1}{3},\frac{b+1}{3})) + \lambda([\frac{a+2}{3},\frac{b+2}{3})) \\ &= b - a = \lambda([a,b)). \end{split}$$

Since the constant sequence ([0, 1)) is exhausting, belongs to \mathcal{G} and $\lambda([0, 1)) = T(\lambda([0, 1)) = 1 < \infty$, we have by Theorem 5.7 that $T(\lambda) = \lambda$.

Solution(c): We use a standard argument. Assume first that $f = \mathbf{1}_A$ for some $A \in \mathcal{B}([0, 1))$. Note that $\mathbf{1}_{T^{-1}A} = \mathbf{1}_A \circ T$, hence by part (b),

$$\int f \, d\lambda = \int \mathbf{1}_A \, d\lambda = \lambda(A) = \lambda(T^{-1}A) = \int \mathbf{1}_{T^{-1}A} \, d\lambda = \int \mathbf{1}_A \circ T \, d\lambda = \int f \circ T \, d\lambda.$$

Now, let $f \in \mathcal{E}^+$, and let $f = \sum_{i=1}^{n} a_i \mathbf{1}_{A_i}$ be a standard representation of f. By linearity of the integral and the above, we have

$$\int f \, d\lambda = \sum_{i=1}^n a_i \int \mathbf{1}_{A_i} \, d\lambda = \sum_{i=1}^n a_i \int \mathbf{1}_{A_i} \circ T \, d\lambda = \int \sum_{i=1}^n a_i \mathbf{1}_{A_i} \circ T \, d\lambda = \int f \circ T \, d\lambda.$$

Assume now that $f \in \mathcal{L}^1_+(\lambda)$, then there exists an increasing sequence $(f_n)_n$ in \mathcal{E}^+ such that $f = \sup_n f_n$. By Beppo-Levi, we have

$$\int f \, d\lambda = \sup_n \int f_n \, d\lambda = \sup_n \int f_n \circ T \, d\lambda = \int \sup_n f_n \circ T \, d\lambda = \int f \circ T \, d\lambda.$$

Finally, consider $f \in \mathcal{L}^1(\lambda)$, then $f^+, f^- \in \mathcal{L}^1_+(\lambda)$, and

$$\int f \, d\lambda = \int f^+ \, d\lambda - \int f^- \, d\lambda = \int f^+ \circ T \, d\lambda - \int f^- \circ T \, d\lambda = \int f \circ T \, d\lambda$$

Solution(d): We check the three conditions for a collection of sets to be a σ -algebra. Firstly, $[0,1) \in \mathcal{B}([0,1))$ and $T^{-1}([0,1)) = [0,1)$. Thus $\lambda(T^{-1}([0,1))\Delta[0,1)) = \lambda(\emptyset) = 0$ so that $[0,1) \in \mathcal{C}$. Secondly, Let $A \in \mathcal{C}$, then $\lambda(T^{-1}A\Delta A) = 0$. Since T is a measurable function and $A \in \mathcal{B}([0,1))$, then $(T^{-1}A)^c \in \mathcal{B}([0,1))$. Since $(T^{-1}A)^c = T^{-1}A^c$, and $T^{-1}A\Delta A = T^{-1}A^c\Delta A^c$, we have $\lambda(T^{-1}A^c\Delta A^c) = \lambda(T^{-1}A\Delta A) = 0$, so $A^c \in \mathcal{C}$. Thirdly, let (A_n) be a sequence in \mathcal{C} , then $A_n \in \mathcal{B}([0,1))$ and $\lambda(T^{-1}A_n\Delta A_n) = 0$ for each n. Since $\mathcal{B}([0,1))$ is a σ -algebra, we have $\bigcup_n A_n \in \mathcal{B}([0,1))$. Note that

$$T^{-1}(\bigcup_n A_n) = \bigcup_n T^{-1}A_n \text{ and } T^{-1}(\bigcup_n A_n)\Delta \bigcup_n A_n \subseteq \bigcup_n (T^{-1}A_n\Delta A_n).$$

Thus,

$$\lambda\left(T^{-1}(\bigcup_{n} A_{n})\Delta\bigcup_{n} A_{n}\right) \leq \sum_{n} \lambda\left(T^{-1}A_{n}\Delta A_{n}\right) = 0.$$

Hence, $\bigcup_n A_n \in \mathcal{C}$. This shows that \mathcal{C} is a σ -algebra.

(2) Consider the measure space $((0, \infty), \mathcal{B}((0, \infty)), \lambda)$, where $\mathcal{B}((0, \infty))$ is the restriction of the Borel σ -algebra, and λ Lebesgue measure restricted to $(0, \infty)$. Determine the value of

$$\lim_{n \to \infty} \int_{(0,n)} \frac{\cos(x^5)}{1 + nx^2} \, d\lambda(x)$$

(2 pts)

Proof: Let $u_n(x) = \mathbf{1}_{(0,n)} \frac{\cos(x^5)}{1+nx^2}$ and

$$g(x) = \begin{cases} 1 & \text{if } 0 < x \le 1 \\ 1/x^2 & \text{if } x > 1. \end{cases}$$

Then, $\lim_{n\to\infty} u_n(x) = 0$ for all x > 0, and $|u_n| \le g$. Furthermore the function g is measurable, non-negative and the improper Riemann integrable on $(0, \infty)$ exists, it follows that it is Lebesgue integrable on $(0, \infty)$. By Lebesgue Dominated Convergence Theorem

$$\lim_{n \to \infty} \int_{(0,n)} \frac{\cos(x^5)}{1 + nx^2} d\lambda(x) = \lim_{n \to \infty} \int u_n(x) d\lambda(x) = \int \lim_{n \to \infty} u_n(x) d\lambda(x) = 0.$$

(3) Let (X, \mathcal{A}, μ) be a finite measure space, and $1 < p, q < \infty$ two conjugate numbers (i.e. 1/p+1/q = 1). Let $g \in \mathcal{M}(\mathcal{A})$ be a measurable function satisfying

$$\int |fg| \, d\mu \le C ||f||_p$$

for all $f \in \mathcal{L}^p(\mu)$ and for some constant C.

- (a) For $n \ge 1$, let $E_n = \{x \in X : |g(x)| \le n\}$ and $g_n = \mathbf{1}_{E_n} |g|^{q/p}$. Show that $g_n \in \mathcal{L}^p(\mu)$ for all $n \ge 1$. (0.5 pts)
- (b) Show that $g \in \mathcal{L}^q(\mu)$. (1.5 pts)

Proof(a):

$$\int |g_n|^p d\mu = \int \mathbf{1}_{E_n} |g|^q d\mu \le n^q \mu(E_n) < \infty \ n \ge 1.$$

Thus, $g_n \in \mathcal{L}^p(\mu)$ for all $n \ge 1$.

Proof(b): Since $g_n \in \mathcal{L}^p(\mu)$ for all $n \ge 1$, then by hypothesis,

$$\int |g_n g| \, d\mu \le C ||g_n||_p.$$

However, $|g_ng| = \mathbf{1}_{E_n}|g|^q = |g_n|^p$, and $||g_n||_p^p = ||\mathbf{1}_{E_n}g||_q^q$. Substituting these in the above inequality, we get

$$||\mathbf{1}_{E_n}g||_q^q = \int \mathbf{1}_{E_n}|g|^q \, d\mu \le C||\mathbf{1}_{E_n}g||_q^{q/p},$$

implying $||\mathbf{1}_{E_n}g||_q \leq C$. Since (E_n) is an increasing sequence of measurable sets with $\bigcup_{n=1}^{\infty} E_n = X$, then $\mathbf{1}_{E_n}|g|^q \nearrow |g|^q$. By Beppo-Levi we have $||g||_q \leq C$, and hence $g \in \mathcal{L}^q(\mu)$.

(a) Show that for any $w \in \mathcal{M}^+(\mathcal{A})$,

$$\int_{\{F_k > w\}} F_k \, d\mu \le \sum_{j=1}^k \int_{\{|f_j| > w\}} |f_j| \, d\mu.$$

(0.5 pts)

(b) Show that for every $\epsilon > 0$, there exists a $w_{\epsilon} \in \mathcal{L}^{1}_{+}(\mu)$ such that for all $k \geq 1$

$$\int_X F_k \, d\mu \le \int_X w_\epsilon \, d\mu + k\epsilon$$

(1 pt)

(c) Show that

$$\lim_{k \to \infty} \frac{1}{k} \int_X F_k \, d\mu = 0.$$

(0.5 pts) **Proof (a)** Let $w \in \mathcal{M}^+(\mathcal{A})$, then

$$\int_{\{F_k > w\}} F_k \, d\mu \leq \sum_{j=1}^k \int_{\{F_k > w\} \cap \{|f_j| = F_k\}} F_k \, d\mu$$
$$\leq \sum_{j=1}^k \int_{\{|f_j| > w\}} |f_j| \, d\mu.$$

Proof (b) Let $\epsilon > 0$. By uniform integrability of the sequence (f_j) there exists $w_{\epsilon} \in \mathcal{L}^+(\mu)$ such that

$$\int_{\{|f_j| > w_\epsilon\}} |f_j| \, d\mu < \epsilon$$

for all $j \ge 1$. By part (a)

$$\int_{\{F_k > w_\epsilon\}} F_k \, d\mu \le \sum_{j=1}^k \int_{\{|f_j| > w_\epsilon\}} |f_j| \, d\mu \le k\epsilon.$$

Now,

$$\int_X F_k d\mu = \int_{\{F_k > w_\epsilon\}} F_k d\mu + \int_{\{F_k \le w_\epsilon\}} F_k d\mu$$
$$\leq k\epsilon + \int_X w_\epsilon d\mu.$$

Proof (c) For any $\epsilon > 0$, by part (b),

$$\frac{1}{k} \int_X F_k \, d\mu \le \frac{1}{k} \int_X w_\epsilon \, d\mu + \epsilon.$$

Thus,

$$\limsup_{k \to \infty} \frac{1}{k} \int_X F_k \, d\mu \le \epsilon,$$

for any ϵ . Since $F_k \ge 0$, we see that

$$\limsup_{k \to \infty} \frac{1}{k} \int_X F_k \, d\mu = \lim_{k \to \infty} \frac{1}{k} \int_X F_k \, d\mu = 0.$$

(5) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra, and λ Lebesgue measure. Let $k, g \in \mathcal{L}^1(\lambda)$ and define $F : \mathbb{R}^2 \to \mathbb{R}$, and $h : \mathbb{R} \to \overline{\mathbb{R}}$ by

$$F(x,y) = k(x-y)g(y).$$

(a) Show that F is measurable. (1 pt)

(b) Show that $F \in \mathcal{L}^1(\lambda \times \lambda)$, and

4

$$\int_{\mathbb{R}\times\mathbb{R}} F(x,y)d(\lambda\times\lambda)(x,y) = \left(\int_{\mathbb{R}} k(x)d\lambda(x)\right)\left(\int_{\mathbb{R}} g(y)d\lambda(y)\right).$$
 (1 pts)

Proof(a): To show measurablity of F, we first extend the domain of g to \mathbb{R}^2 as follows. Define $\overline{g}: \mathbb{R}^2 \to \mathbb{R}$ by $\overline{g}(x, y) = g \circ \pi_2(x, y) = g(y)$. It is easy to see that \overline{g} is $\mathcal{B}(\mathbb{R}^2)/\mathcal{B}(\mathbb{R})$ measurable. Moreover, the function $d: \mathbb{R}^2 \to \mathbb{R}$ given by d(x, y) = x - y is continuous hence $\mathcal{B}(\mathbb{R}^2)/\mathcal{B}(\mathbb{R})$ measurable. Since

$$F(x,y) = k(x-y)g(y) = k \circ d(x,y)\overline{g}(x,y)$$

is the product of two $\mathcal{B}(\mathbb{R}^2)/\mathcal{B}(\mathbb{R})$ measurable functions, it follows that F is $\mathcal{B}(\mathbb{R}^2)/\mathcal{B}(\mathbb{R})$ measurable.

Proof(b): Since Lebesgue measure is translation invariant, we have

$$\int \int |F(x,y)| \, d\lambda(x) d\lambda(y) = \int \int |k(x-y)| |g(y)| \, d\lambda(x) d\lambda(y)$$
$$= \int \int |k(x)| |g(y)| \, d\lambda(x) d\lambda(y)$$
$$= \int |k(x)| \, d\lambda(x) \int |g(y)| d\lambda(y) < \infty$$

By Fubini's Theorem, this implies that F is $\lambda \times \lambda$ integrable, and

$$\int F(x,y) d(\lambda \times \lambda)(x,y) = \int \int k(x-y)g(y) d\lambda(x) d\lambda(y)$$
$$= \int \int k(x)g(y) d\lambda(x)d\lambda)(y)$$
$$= \int k(x) d\lambda(x) \int g(y)d\lambda)(y).$$