bag $=[$ text width $=3 \mathrm{~cm}$, text centered $]$ end $=[]$ Utrecht University Mathematical Institute

Mid-Term Exam for Introduction to Financial Mathematics, WISB373

Friday May 21th 2021, 13:15-15:15 (2 hours examination)

1. Flip a biased coin three times with $\mathbb{P}(H)=\frac{1}{4}$ and $\mathbb{P}(T)=\frac{3}{4}$. So our probability space is $(\Omega, \mathcal{F}, \mathbb{P})$, with

$$
\Omega=\{H H H ; H H T, H T H, H T T, T H H, T H T, T T H, T T T\},
$$

\mathcal{F} is the power set of Ω, and

$$
\begin{aligned}
\mathbb{P}(H H H) & =\frac{1}{64}, \quad \mathbb{P}(T T T) \\
\frac{27}{64} . & \\
\mathbb{P}(H H T) & =P(H T H)=P(T H H)=\frac{3}{64}, \\
\mathbb{P}(H T T) & =P(T H T)=P(T T H)=\frac{9}{64} .
\end{aligned}
$$

Let \mathcal{F}_{1} be the σ-algebra containing the information on the first coin flip, i.e., $\mathcal{F}_{1}=\sigma\left(\left\{A_{H}, A_{T}\right\}\right)$, with $A_{H}=\{H H H, H H T, H T H, H T T\}$ and $A_{T}=\{T H H, T H T, T T H, T T T\}$. Define X on Ω by

$$
X=16 \cdot \mathbb{1}_{\{H H H ; H H T\}}+8 \cdot \mathbb{1}_{\{H T H, H T T, T H H, T H T\}}+4 \cdot \mathbb{1}_{\{T T H, T T T\}} .
$$

a. Find an explicit expression for $\mathbb{E}\left[X \mid \mathcal{F}_{1}\right]$. (1 pt)
b. Define the price process $S_{0}, S_{1}, S_{2}, S_{3}$ on Ω by a tree, with $S_{0}=4$ and three coin tosses. Each time a head is tossed we have $S_{i}=$ $2 S_{i-1}$, and each time a tail is obtained, we have $S_{i}=\frac{1}{2} S_{i-1}$.
Draw the corresponding tree, and show that $\sigma\left(S_{2}\right) \neq \mathcal{F}_{2} .\left(\mathcal{F}_{2}\right.$ is the sigma algebra that contains the information about the first two coin flips.) (2 pt)
2. Let $\{W(t): t \geq 0\}$ be a Brownian motion, we define a process $\{X(t)$: $t \geq 0\}$ by

$$
X(t)=\frac{1}{\sqrt{3}} W(3 t)
$$

a. Prove that $\{X(t): t \geq 0\}$ is a Brownian motion. (1 pt)
b. Let $Y(t)=X^{2}(t)-2 \sqrt{c} t$ for some non-negative constant c and for all $t \geq 0$. For which value of c is the process $\{Y(t): t \geq 0\}$ a martingale with respect to the filtration $\{\mathcal{F}(t): t \geq 0\}$, with $\mathcal{F}(t)=\sigma(X(s): s \leq t) ?(1 \mathrm{pt})$
3. Suppose $\{W(t): t \geq 0\}$ is a Brownian Motion, $\{\mathcal{F}(t): t \geq 0\}$ is a filtration for $\{W(t): t \geq 0\}$ and $\sigma>0$. The Geometric Brownian Motion, GBM, $\{S(t): 0 \leq t \leq T\}$ is defined by

$$
S(t)=S(0) \exp \left\{\sigma W(t)-\frac{1}{2} \sigma^{2} t\right\}
$$

with $\{W(t): t \geq 0\}$ a BM. This process can be used to model certain asset prices, where parameter σ is the volatility.
The log-return on the interval $\left[t_{i}, t_{i+1}\right]$ is defined as,

$$
\log \left(\frac{S\left(t_{i+1}\right)}{S\left(t_{i}\right)}\right)
$$

a. Show that, on the $0 \leq T_{1} \leq T_{2}$, with the partition

$$
T_{1}=t_{0}<t_{1}<\ldots<t_{m}=T_{2},
$$

the quadratic variation of the log-returns gives us an estimate for the realized volatility in the time interval $\left[T_{1}, T_{2}\right]$. (2 pt)
b. Show that $S(t)$ is a martingale under the filtration $\mathcal{F}(t)$. (2 pt)

