
NEE: sending 50% of the rays to the lights, while the lights typically do not take up 50% of the

hemisphere accounts for the fact that the lights do contribute disproportionally to the irradiance.

RR: focusing effort on paths that contribute significantly, while suppressing less relevant paths.

Fresnel: if the reflection is important, we sample it more often.

Rays traversing empty space do not test primitives, which is good. So splitting a leaf may prevent

primitive tests. In a BVH, this happens implicitly, as the bounds enclose the primitives, leaving

empty space between the bounds.

The SAH leads to a tree that consists of AABBs with a low summed surface area, which directly

affects the probability of a ray hitting these nodes.

The projection of a flat surface on the curved hemisphere is always smaller than the

area of the flat surface itself. The error can be arbitrarily large for very large lights.

ADVANCED GRAPHICS – 2018/2019

January 31st – 13.30 – 15.30 – RUPPERT-BLAUW

Please write clearly. Please do not ask for clarification during the exam. If you find a question unclear

or ambiguous: write down how you interpret the question, then answer it. For each question you can

score up to 10 points, your grade is points * 9 / 70 + 1.

IMPORTANCE

1. When using Russian roulette, the recommended formula for survival probability is:

𝑃𝑠𝑢𝑟𝑣𝑖𝑣𝑒 = 𝑚𝑖𝑛(1, 𝑚𝑎𝑥(𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒))

An alternative survival probability is:

𝑃𝑠𝑢𝑟𝑣𝑖𝑣𝑒 = 𝑚𝑖𝑛(1, (𝑟𝑒𝑑 + 𝑔𝑟𝑒𝑒𝑛 + 𝑏𝑙𝑢𝑒) / 3)

Explain why and how the first formula is better.

2. Explain why the following techniques can be seen as importance sampling techniques:

a) Next Event Estimation

b) Russian Roulette

c) For dielectrics: basing the probability of generating a reflection on the Fresnel term

Note, to be sure: I am not asking for a description of the techniques.

ACCELERATION STRUCTURES

3. Why is it often advantageous to have empty leaves in a kD-tree, and why do we not have

these in a BVH?

4. We know that a BVH constructed using the SAH can be traversed more efficiently than one

constructed using midpoint splits. But, why is this so?

BIAS AND APPROXIMATIONS

5. The solid angle of a planar area light source over the hemisphere of point 𝑝 is approximately

𝐴𝑙𝑖𝑔ℎ𝑡 cos 𝜃𝑙𝑖𝑔ℎ𝑡

𝑑2 ,

where 𝑑 is the distance between 𝑝 and the light, 𝐴𝑙𝑖𝑔ℎ𝑡 is the surface area of the light source

and cos 𝜃𝑙𝑖𝑔ℎ𝑡 is the dot product between the light normal and a normalized vector from the

light to 𝑝.

By now, it is well-known that this is an approximation. Why is this an approximation?

The first one has the interesting effect that

(0.8,0,0) becomes (1,0,0) if the path survives. The

second one has the problem that color

components may become arbitrarily large, which

shows up as fireflies.

The output is unbiased in both cases. Even though the result will look silly for a long

time, the expected value of the estimator equals the correct result, even after 1 sample.

dot(R,N)/PI. This is the pdf we used for cosine-weighted random directions. The dot is countered by the dot for the

conversion of radiance to irradiance and the division by PI in the BRDF, so in this specific situation, things get really simple.

LIGHT TRANSPORT

6. A programmer optimizes a path tracer for a GPU in the following unconventional manner.

The path tracer evaluates one path for each pixel. For these paths, a single light source is

randomly selected out of a large set of lights. This randomly chosen light source is the same

for all pixels.

a) After evaluating one sample per pixel, is the output of the path tracer unbiased?

Motivate your answer.

b) After taking (and averaging) many samples, is the output of the path tracer unbiased?

Motivate your answer.

7. Consider the following path tracer pseudo code:

Ray ray = generatePrimaryRay()

vec3 thoughput = { 1, 1, 1 }

vec3 energy = { 0, 0, 0 }

loop:

 IntersectionInfo intersection = scene.Intersect(ray)

 if (intersection.NoHit()) return energy

 if (intersection.HitLight())

 // we hit a light; set path energy and terminate

 energy += throughput * intersection.EmissiveColor

 return energy

 else

 // continue the random path

 vec3 R = NewRandomDirection(intersection.normal)

 throughput *= intersection.diffuse_color

 ray = new Ray(intersection.position, R)

Assume that the code produces correct output, and that the scene consists of pure

Lambertian (i.e. diffuse) surfaces, plus area lights. The distribution of the random directions

produced by ‘NewRandomDirection’ may or may not be uniform.

Under these assumptions:

Write down the pdf that is implicitly used in the random bounce code.

May the Light be with you!

 Don’t forget to feed the Caracal.

