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Problem 1. An invertible 2× 2-matrix M with real entries is called a MOAWOA-matrix if its
inverse M−1 can be obtained by permuting the entries of M . Show that if M is a MOAWOA-
matrix, then so is M2.
An invertible 3× 3-matrix M with real entries is called a MOPWOP-matrix if its inverse M−1

can be obtained by permuting the entries of M . Does the same conclusion hold for MOPWOP-
matrices?

Proposed by Merlijn Staps and Jeroen Huijben (Universiteit Utrecht).

Solution. We first deal with the MOAWOA-matrices. Write M = ( a bc d ) and let D = detM .
Then we have M−1 = 1

D

(
d −b
−c a

)
. Now, suppose M is a MOAWOA-matrix. Then M−1 can

be obtained by permuting the entries of M . Therefore, we must have |a| + |b| + |c| + |d| =

| d
D
|+ |−b

D
|+ |−c

D
|+ | a

D
| = |a|+|b|+|c|+|d|

|D| . Since M is invertible, we have |a|+ |b|+ |c|+ |d| > 0. It fol-

lows that |D| = 1, hence D = ±1. First suppose D = 1. Then we have [a, b, c, d] = [d,−b,−c, a],
where we use square brackets to denote multisets. We find [b, c] = [−b,−c], which implies that
b = −c. We therefore have M =

(
a b
−b d

)
with ad + b2 = 1. Conversely, any matrix of this form

is a MOAWOA-matrix. In particular, since det(M2) = 1 and M2 =
(

a2−b2 ab+bd
−ba−bd −b2+d2

)
the matrix

M2 is a MOAWOA-matrix. Now suppose D = −1. Then we have [a, b, c, d] = [−d, b, c,−a]. It

now follows that a = −d. Therefore, M = ( a b
c −a ). We find M2 =

(
a2+bc 0

0 a2+bc

)
= ( 1 0

0 1 ) since

a2 + bc = − detM = 1. Clearly, M2 is a MOAWOA-matrix.

A similar conclusion does not hold for MOPWOP-matrices. A counterexample is given by

M =

 1 1 −1
1 0 0
0 0 1

 , with M−1 =

 0 1 0
1 −1 1
0 0 1

 .

Computing

M2 =

 2 1 −2
1 1 −1
0 0 1

 and M−2 =

 1 −1 1
−1 2 0
0 0 1


shows that whereas M is a MOPWOP-matrix, M2 is not. �
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Problem 2. Suppose I and J are (real) open intervals of finite positive length, each interval
not containing the other. Show that there exists a λ 6= 0 such that x 7→ eλx maps I and J to
intervals of equal length if and only if I and J have different lengths.

Proposed by Leslie Molag (Katholieke Universiteit Leuven).

Solution. Denote the endpoints of I and J by a < b and c < d respectively. Without loss of
generality d > b and c > a (since each interval does not contain the other). Let us define the
function

f(λ) =

{ d−c
b−a if λ = 0,

edλ−ecλ
ebλ−eaλ otherwise.

Note that I and J being mapped to intervals of equal length by x 7→ eλx is equivalent to f
attaining the value 1 in some λ 6= 0. The function f is continuous by construction. We notice
that f(x) → ∞ as x → ∞ and f(x) → 0 as x → −∞. When we assume that I and J have
distinct lengths we also know that f(0) 6= 1, thus by the intermediate value theorem there exists
an λ 6= 0 such that f(λ) = 1. When I and J have the same length we have f(λ) = e(c−a)λ,
which does not equal 1 for any λ 6= 0. �

Problem 3. Consider n people that stand in a circle. Initially, each of them holds a red and
a blue ball. In a turn, each person chooses one of his balls and hands it to the person on his
right. Thus, after a turn everyone again holds two balls, but the distribution of colors may
have changed. Determine all positive integers n for which there exists a sequence of turns that,
from the described starting point, visits all possible color distributions of the 2n balls, without
any color distribution occurring twice.

Proposed by Wouter Zomervrucht (Freie Universität Berlin).

Solution. Number the people 1, . . . , n in circular order. We denote by [a1a2 · · · an] the
color distribution where person i has precisely ai blue balls (and 2 − ai red balls). A circular
permutation of [a1a2 · · · an] is one of the distributions [ar+1ar+2 · · · ar+n] with 1 ≤ r ≤ n, taking
the indices modulo n. We will sometimes write (ab)k to denote the k-fold iteration abab · · · ab.
We show that it can be done for n = 1, 3 only. The case n = 1 is clear. For n = 3 one can
write down an explicit solution, e.g. [111]→ [012]→ [102]→ [201]→ [210]→ [120]→ [021].
Suppose n = 2k is even. From the distribution [(20)k] one can only go to the initial position
[1n], so if a suitable sequence of turns exists, [(20)k] must be the final distribution. However,
the same applies to [(02)k], contradiction.
Suppose n = 2k+1 ≥ 5 is odd and suppose a suitable sequence of turns exists. By symmetry we
may assume that no circular permutation Q of [(20)k1] is the final distribution. The neighbors
of such Q in the turn sequence can only be the initial position P0 or some circular permutation
of [1n−202]. As the n circular permutations of [(20)k1] together have at least n + 1 neighbors
(they are not initial nor final), we see that P0 must occur as one of the neighbors. Now apply-
ing the same argument to the circular permutations of [(02)k1], and realizing that P0 cannot
occur as neighbor again, we see that the final distribution in the turn sequence is some circular
permutation of [(02)k1]. In particular, no circular permutation of [(20)k−1021] or [02(20)k−11]
is initial or final. But all neighbors of these 2n distributions are circular permutations of either
[1n−3012] or [1n−40112]. These are only 2n possible neighbors, contradiction. �

Problem 4. We consider sequences a0, a1, a2, . . . of real numbers that satisfy

an = 4an−1(1− an−1)

for all positive integers n. How many such sequences satisfy a2016 = a0?
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Proposed by Merlijn Staps (Universiteit Utrecht).

Solution. There are 22016 such sequences. If a0 < 0 we have a1 = 4a0(1 − a0) < a0 be-
cause 4(1 − a0) > 1. It then follows that a2016 < a2015 < · · · < a1 < a0, so we cannot have
a2016 = a0. If a0 > 1 we have a1 = 4a0(1 − a0) < 0 and it follows that a2016 < 0 < a0.
Hence if a2016 = a0 we must have a0 ∈ [0, 1]. This means that we can write a0 = sin2(α) for
some α ∈ [0, π

2
]. If an−1 = sin2(β) we have an = 4an−1(1 − an−1) = 4 sin2(β)(1 − sin2(β)) =

4 sin2(β) cos2(β) = (2 sin(β) cos(β))2 = sin2(2β). By induction, it follows that an = sin2(2nα)
for all n ≥ 0. In particular, we have a2016 = sin2(22016α). From a0 = a2016 it now follows that
22016α = ±α + kπ where k is an integer. This means that α = π · k

22016±1 . For α = kπ
22016−1 we

must have 0 ≤ k ≤ 22016−1
2

= 22015 − 1
2
, which is satisfied for 22015 values of k. For α = kπ

22016+1

we must have 0 ≤ k ≤ 22016+1
2

= 22015 + 1
2
, which is satisfied for 22015 + 1 values of k. Because

22016 + 1 and 22016 − 1 are coprime only the value α = 0 is counted twice, so in total there are
22015 +(22015 +1)−1 = 22016 possible values for α. This means that there are also 22016 possible
sequences. �

Problem 5. We are given N weights, with masses 1 kg, 2 kg, . . . , N kg. We want to select
at least two of these weights, such that their total mass equals the average mass of the other
weights. Show that this is possible if and only if N + 1 is a square.

Proposed by Arne Smeets (Katholieke Universiteit Leuven).

Solution. Suppose we can select weights such that the condition holds. Let k ≥ 2 be
the number of selected weights and let S be the sum of their masses. Then we must have

N ≥ S ≥ 1 + 2 + . . . + k = k(k+1)
2

. Furthermore, we have S =
N(N+1)

2
−S

N−k , which rewrites to
2S(N − k + 1) = N(N + 1). It follows that N − k + 1 divides N(N + 1), hence it also divides

N(N + 1)− (N + k)(N − k + 1) = k(k − 1).

We have k(k − 1) ≤ 2N − 2k < 2(N − k + 1), so we must have N − k + 1 = k(k − 1) and
N + 1 = k2.
Conversely, if N + 1 = k2 then we can select the weights with masses 1 kg, . . . , k kg. �

Problem 6. Decide whether there exists a function f : R → Z that is surjective on every
infinite additive subgroup of R.

Proposed by Merlijn Staps (Universiteit Utrecht).

Solution. Yes, such a function exists and can be constructed explicitly. For a rational number
q 6∈ {0,±1} we define p(q) as the largest prime number for which ep(q) (the number of factors
p in q) is nonzero. Then we define

f(x) =


0 if x ∈ {0,±1};
sgn(x)ep(x)(x) if x ∈ Q, x 6∈ {0,±1};
sgn(x)

⌊
1
{|x|}

⌋
if x 6∈ Q.

(Note that f is well-defined because the fractional part {x} of x is never zero for irrational x.)
It is now sufficient to show that f is surjective on every cyclic infinite additive subgroup of R.
Let y > 0 be a real number, we will show that f is surjective on 〈y〉. Note that f is an odd
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function. Therefore, it is sufficient to show that f takes all positive integer values on 〈y〉. First
suppose that y is a rational number. Let q be a prime number that is larger than all prime
factors of y. Then for a positive integer n we have f(yqn) = n since yqn ∈ Q>0 and p(yqn) = q.
This means that f is surjective on 〈y〉 for rational y. Now suppose that y > 0 is irrational.
Using the pigeonhole principle, it is straightforward to show that the set {{my} : m ∈ Z>0} is
dense in [0, 1]. Therefore there exists a positive integer m for which 1

n+1
< {my} < 1

n
. It then

follows that f(my) = b 1
{my}c = n, so f is also surjective on 〈y〉 for irrational y. �
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